我国空间新技术试验卫星第二批科学与技术成果发布******
记者从中科院微小卫星创新研究院获悉,我国“创新X”系列首发星——空间新技术试验卫星第二批科学与技术成果近日发布。这批成果主要包括获得我国首幅太阳过渡区图像、探测到迄今最亮的伽马射线暴、首次获得全球磁场勘测图等。
01
46.5nm极紫外成像仪获得我国首幅太阳过渡区图像
46.5nm极紫外太阳成像仪(SUTRI)是国际首台基于多层膜窄带滤光技术的46.5nm太阳成像仪,用于探测50万度左右的太阳过渡区(太阳色球与日冕之间的层次),由国家天文台联合北京大学、同济大学、西安光学精密机械研究所和微小卫星创新研究院共同研制。自2022年8月30日载荷开机以来已经获取了超过1.6TB的探测数据,成功实现了我国首次太阳过渡区探测。这也是人类近半个世纪来首次在46.5nm波段拍摄太阳的完整图像。SUTRI拍摄的图像清晰地显示了过渡区网络组织、活动区冕环系统、日珥和暗条、冕洞等结构(如图2),这些结构的观测特征表明,SUTRI拍摄的确实是从太阳低层大气往日冕过渡的结构,符合预期。SUTRI已探测到多个耀斑、喷流、日珥爆发和日冕物质抛射事件(如图3),表明其数据适合研究各种类型的太阳活动现象。此外,SUTRI还发现活动区普遍存在50万度左右的、朝向太阳表面的物质流动,这些流动在太阳大气的物质循环过程中占有重要地位。目前SUTRI一切功能正常,在轨测试和标定结束后,SUTRI观测的科学数据将向国内外太阳物理和空间天气同行全部开放。
△图1 “创新X”首发星——空间新技术试验卫星(SATech-01)
△图2 SUTRI在2022年9月29日观测到的太阳活动图(图片由SUTRI科学团队提供)
△图3 SUTRI在2022年9月23日观测到的一次太阳爆发事件(图片由SUTRI科学团队提供)
02
高能爆发探索者(HEBS)捕获到迄今为止最亮伽马暴
由中科院高能物理研究所研制的高能爆发探索者(HEBS)于北京时间2022年10月9日21时17分,与我国慧眼卫星和高海拔宇宙线观测站同时探测到迄今最亮的伽马射线暴(编号为GRB 221009A)。根据HEBS的精确测量结果,该伽马暴比以往人类观测到的最亮伽马射线暴还亮10倍以上。由于该伽马射线暴的亮度极高,国际上绝大部分探测设备均发生了严重的数据饱和丢失、脉冲堆积等仪器效应,难以获得精确测量结果。HEBS凭借创新的探测器设计以及新颖的高纬度观测模式设置,探测器经受住了高计数率的考验,获得了高时间分辨率的光变曲线,以及10千电子伏至5兆电子伏的宽能段能谱。HEBS极为宝贵的精确测量结果对于揭示伽马射线暴的起源和辐射机制具有重要意义。
国家天文台和上海技术物理研究所研制的EP探路者龙虾眼X射线成像仪(LEIA)于10月12日也成功对这一伽马射线暴开展了观测,探测到了伽马射线暴X射线余辉。这也是国际上首次用龙虾眼型X射线望远镜探测到伽马射线暴。
△图4 高能爆发探索者(HEBS)发现并精确测量迄今最亮的伽马射线暴,打破多项纪录。
03
国产量子磁力仪首次空间应用并获得全球磁场图
由中国科学院国家空间科学中心和沈阳自动化研究所联合研制的国产量子磁力仪(CPT)及伸展臂,可实现全球地磁矢量和标量高精度测量。2022年11月7日,多级套筒式无磁伸展臂顺利展开,将各传感器探头伸出约4.35米距离,处于伸展臂顶端的CPT原子/量子磁力仪探头、AMR磁阻磁力仪探头、NST星敏感器获取了有效探测数据,首次在轨验证了磁场矢量和姿态一体化同步探测技术,磁测量噪声峰峰值<0.1nT,实现了国产量子磁力仪的首次空间验证与应用。
△图5 CPT磁测系统“多级套筒式无磁伸展臂”地面展开测试(图片由沈自所、空间中心和卫星团队提供)
△图6 量子磁力仪首张全球磁场勘测图(图片由空间中心太阳活动与空间天气重点实验室提供)
△图7 NST星敏感器相对于卫星本体的姿态数据(图片由空间中心和中科新伦琴NST星敏团队提供)
04
空间载荷、平台新技术成果丰富
由中国科学院长春光学精密机械与物理研究所空间新技术部研制的多功能一体化相机,首次采用基于共口径多出瞳光学系统新体制,在轨实现集可见光、长波红外、彩色微光于一体的空间光学遥感观测。相机于2022年9月24日开机,成功取得首张170km×42km大幅宽地面遥感图像(如图8),探索了单台相机即可同时实现多谱段多模态遥感成像的新模式,为我国未来高集成度一体化空间光学遥感载荷发展提供了技术储备。
△图8 多功能一体化相机对地宽幅遥感成像图(图片由长春光学精密机械与物理研究所提供)
由中国科学院半导体研究所、自动化研究所、微小卫星创新研究院及浙江大学航空航天学院空天信息技术研究所联合研制的异构多核智能处理单元也取得了首批成果。半导体所的低功耗边缘计算型智能遥感视觉芯片,实现了遥感图像的高速智能化目标检测;自动化所的通用智能系统验证了基于高速交换网络的异构多处理器模块化、弹性化硬件架构;浙江大学的国产AI系统装载了细胞分割算法和飞机识别算法,数据结果与地面孪生系统数据一致,在功耗10瓦条件下算力达到22Tops,验证了国产AI器件的在轨智能图像处理能力。
△图9 边缘计算型遥感视觉芯片检测遥感目标示意图(图片由中科院半导体所提供)
中科院微小卫星创新院的可展收式辐射器成功在轨实现首次应用,辐射器执行机构已顺利完成六十余次展开和收拢动作,连续五轨动态试验结果(如图10)表明环路热管-可展收式辐射器集成系统在负载工作时段启动性能良好,辐射器连续展开-收拢可实现散热能力在轨大范围调控。
△图10 环路热管-可展收式辐射器集成系统连续五轨智能热控测试结果
国家空间科学中心研制的空间元器件辐射效应试验平台载荷开机运行良好,搭载的元器件在测试期间均工作正常。
“科学与技术成果的涌现体现了我们对这颗卫星‘创新X,创新无极限’的定位,开创了新技术众筹模式的先河。”“力箭一号”工程副总师兼卫星系统总师张永合说,“这些新载荷、新技术产品都是各参与方自主投入的,不少是从0到1的创新,通过试验星将创新技术快速集成并飞行验证,可以加快核心关键技术从基础研究到在轨应用的成果转化。”
2022年7月27日12时12分,由中国科学院自主研制的迄今我国最大固体运载火箭“力箭一号”(ZK-1A)在酒泉卫星发射中心成功发射,采用“一箭六星”的方式,将“创新X”系列首发星——空间新技术试验卫星等六颗卫星送入预定轨道。2022年9月5日,空间新技术试验卫星(SATech-01)发布了首批科学成果,包括龙虾眼X射线成像仪(LEIA)的国际首幅宽视场X射线聚焦成像天图,伽马射线暴载荷(HEBS)的首个伽马暴等。
作为我国“创新X”系列的首发星,未来一段时间,空间新技术试验卫星搭载的几种新型推进系统等载荷也将开展在轨试验,卫星上的四个科学载荷也已进入常规化观测,陆续将会获得更多科学和技术成果。
(总台央视记者 帅俊全 褚尔嘉)
体测跑800米是噩梦?学会这招轻松跑完****** 最近,不少大学进行了体测,很多跑完800米、1000米的大学生们都会咳个不停。其实,跑完咳个不停,和不当的呼吸方式有关。 1 跑完步我们为什么会咳嗽? 当我们跑步速度不快时,用鼻子呼吸就可以满足身体对氧气的需求,而且鼻子呼吸,可以帮助过滤空气中灰尘等颗粒物,气温低时可起到加热空气作用,减少冷空气对气管、肺部的刺激。 但是当我们进入加速阶段时,仅靠两个鼻孔无法满足对氧气的需求,这时就需要用嘴巴呼吸,但是由于秋冬天气寒冷,气候干燥,寒冷干燥的空气直接进入口腔,会刺激我们的口腔、咽喉和气管黏膜,大脑会判断呼吸道有异物入侵,于是我们就会咳嗽以排除异物,所以跑完咳嗽是我们身体的正常反应。 机智的网友可能会问:那我不用嘴呼吸,全程用鼻子呼吸不就不咳嗽了吗? 只用鼻子呼吸可能确实不会咳嗽,但当你需要提速时,只用鼻子呼吸,身体的摄氧量就达不到,就会难受,坚持不下来,否则就只能一直慢跑,无法提速。 用嘴还是鼻子其实取决于身体对氧气的需求量,并没有绝对统一的标准。所以,跑步时不是绝对地不要用嘴巴呼吸,毕竟嘴巴呼吸可以增加我们的供氧量,提高我们的速度。我们要学会的是正确地用嘴巴呼吸,而不是张嘴,让冷风无情地往里面灌。 图片 2 学会腹式呼吸 我们正常呼吸的时候,使用的是胸式呼吸,主要用的肺的中部和上部呼吸,吸气的时候,腹部提起变小;呼气的时候,腹部放下变大。这种呼吸方式会增加我们的肺部和心脏负担。肺部和心脏必须工作得更勤快,才可以确保氧供应充足。 腹式呼吸简单地来说就是“鼻吸口呼”。与胸式呼吸相反,腹式呼吸时,吸气的时候腹部鼓起来,呼气的时候腹部下沉。整个过程是靠横膈肌的活动完成的,当吸气时,横膈膜收缩并向下移动,胸部的肌肉收缩以使胸腔扩大,这些动作会扩充胸腔的容量,并将空气吸入肺部,让肺扩张到最大限度,并最大限度地吸入空气,进而可以提高每一次呼吸的氧气吸入量。 与横膈膜相连的其他解剖结构 图源:《高效呼吸训练:舞蹈、瑜伽、普拉提的功能性练习》,埃里克·富兰克林 如果找不到感觉,可以把手放在腹部,吸气的时候去感受腹部和手的对抗,呼气的时候感受手随着我们的腹部一起下陷。 如果呼吸的时候出现憋气或不顺畅,可以保持平静的呼吸,放松之后再进行腹式呼吸。 学会用腹式呼吸法跑步,鼻吸口呼,寒冷的空气不会直接进入我们的口腔,可以有效避免跑完咳嗽的困扰。 3 呼吸的进阶——韵律呼吸 如果你已经学会了腹式呼吸,想在跑步提速的同时更加轻松,可以尝试韵律呼吸。 韵律呼吸建立在腹式呼吸的基础上,但在节奏上进行了创新,认为应该采用奇数的呼吸模式,即三步一吸,两步一呼,或者两步一吸,一步一呼。 跑步时,当我们的脚在开始呼气的时候落到地面,会产生最强的冲击力,此时身体的稳定性最差的。如果采用两步一吸,两步一呼,或者三步一吸,三步一呼这种偶数的呼吸模式时,呼气的时候总是落在同一只脚上,身体的冲击力完全由同一只脚承担,容易给脚部造成伤害。 而韵律呼吸提倡的奇数呼吸模式可以让我们的左右脚落地时轮流呼气,让左右脚均匀地承担身体的冲击力。 至于是采取三步一吸,两步一呼,还是两步一吸,一步一呼,取决于我们跑步的状态。 如果是长跑或对速度没有什么要求,可以采取三步一吸,两步一呼,数到3时吸气,再数到2时呼气。如果在比赛时冲刺,或者需要提速,可以采取两步一吸,一步一呼,数到2时吸气,再数到1时呼气。 感兴趣的朋友不妨尝试一下,学会了呼吸,也许800/100米就不再是噩梦了。 资料来源:科普中国、全民较真-腾讯新闻、《跑步时该如何呼吸》《高效呼吸训练:舞蹈、瑜伽、普拉提的功能性练习》 整理:党敏 (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |